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Electromagnetic probe

• Obesrving the structure of the nucleon in 
electron scattering

• Deep-inelastic scattering: description of the 
parton content of the nucleon

• Elastic scattering:

• Electromagnetic form factors

• Charge and current distributions
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Elastic Scattering
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p≡ pµ= (ε,!p)
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Lab frame (proton target at rest)
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Nucleon Form Factors

e scattering angleθ :



Form Factors
• Electromagnetic current

• Structureless particle (spin-1/2)

• Extended structure, like nucleon

〈l(p′)| jµ(0)|l(p)〉 = ū(p′)γµu(p)

jµEM = Qψ̄γµψ

〈N(P′)|Jµ(0)|N(P)〉 = ū(P′)
[
γµFN

1 (Q2)+ iσµν qν2MFN
2 (Q2)

]
u(P)

Dirac Pauli
F1(0) = Q
F2(0) = κ

Net charge

Anomalous magnetic moment



The Breit Frame

GE(Q2) = F1(Q2)− Q2

4M2F2(Q
2)

GM(Q2) = F1(Q2)+F2(Q2)

Sachs form factors

!P=−!q/2

!P′ =!q/2

qµ= (0,!q)

E = E ′

No energy transferred to target



ρE(!r) =
∫ d3q

(2π)3e
−i!q·!r M

E(!q)
GE(!q2)

Fourier transform gives classical charge distribution

〈Ns′(q/2)|J0(0)|Ns(−!q/2)〉 = 2MGE(!q2)δss′

〈Ns′(q/2)|!J(0)|Ns(−!q/2)〉 = GM(!q2)χ†s′ i!σ×!qχs

Breit frame matrix elements

The Breit Frame

GE(Q2) = F1(Q2)− Q2

4M2F2(Q
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〈r2〉 = −6 d
dQ2

G(Q2 = 0)

Charge radius



Neutron electric form factor

Charge radius
〈r2〉nE = −0.116±0.002fm2



Nucleon
in QCD

Text



QCD is Nonperturbative
• At low energy, strong coupling constant becomes 

large; perturbation theory doesn’t make sense

• Require nonperturbative definition of path integral

• Numerical evaluation in lattice QCD only known 
technique

• eg. Nucleon mass:

CN(τ) =∑
!x
∑
gluons

χN(!x,τ)χ̄N(!0,0)(detMf)2 exp [−SG]

fermion
determinant

gluon actionnucleon 2-pt
correlator

large τ CN(τ) = λ20e−E0τ+λ21e−E1τ+ . . .

nucleon mass



• Lattice calculations are notoriously 
time consuming...

• What else can we learn while we wait?



Chiral symmetry
• Free Lagrangian for 2 species of massless quarks

ψ=
(
u
d

)
L = ū∂/u+ d̄∂/d =

(
ū d̄

)
∂/

(
u
d

)
Rotation SO(2)

ψ→ exp
[
iφ

(
0 i
−i 0

)]
ψ=

(
cosφ −sinφ
sinφ cosφ

)
ψ

Unitary transformation SU(2)
Pauli matrices !σ=

{(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}

{σi,σ j} = 2δi j
ψ→ exp

[
i!φ ·!σ

]
ψ

σ†i = σi



Chiral symmetry... 2
L = ū∂/u+ d̄∂/d =

(
ū d̄

)
∂/

(
u
d

)
L = ψ̄∂/ψ

Transformation (vector)

ψ→ exp
[
i!φ ·!σ

]
ψ

ψ̄→ ψ̄exp
[
−i!φ ·!σ†

]
L → L

Transformation (axial)

ψ→ exp
[
i!φ ·!σγ5

]
ψ

ψ̄→ ψ̄ exp
[
i!φ ·!σγ5

]
L → L

m ψ̄ψ→ m ψ̄ψ m ψ̄ψ→ m ψ̄exp
[
2i!φ ·!σγ5

]
ψ

In chiral limit (m=0), QCD invariant under vector and 
axial vector transformations



Chiral symmetry... 3

• Noether’s theorem: Continuous symmetry 
implies conserved current

• Chiral currents simply R=V+A and L=V-A

• defining right- and left-handed currents

• chirality~helicity:

Vector Axial
!Vµ= ψ̄γµ!σψ !Aµ= ψ̄γµγ5!σψ

Under parity transformation: V →−V, A→ A
R→−L, L→−R

!p.!s
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For fermions with mass, helicity 
cannot be a good quantum number:

One can always boost to a frame 
where the helicity is reversed



Chiral symmetry in QCD
• Light quark masses are very close to the chiral limit

• Real world should be almost chirally symmetric

• Axial charge

mu,d ∼ 5−10MeV mN ∼ 1000MeV

!QA =
∫
d3x!A0

Expect [HQCD,QA]∼ mq

HQCD|N+〉 =MN|N+〉
Nucleon mass

Should see degenerate parity partner

HQCD|N−〉=MN∗|N−〉 MN∗−MN ∼ 600MeV

!Aµ= ψ̄γµγ5!σψ

|N−〉 ≡ QA|N+〉



Chiral symmetry in QCD... 2
• Resolution of apparent problem

• Chiral symmetry is spontaneously broken
Goldstone mechanism:

“... if there is a continuous symmetry transformation under 
which the Lagrangian is invariant, then either the vacuum state 
is also invariant under the transformation, or there must exist 

particles of zero mass.”

Pion is an approximate “Goldstone boson”, with 
mass vanishing in the chiral limit

Gell-Mann, Oakes, Renner relation m2π ∝ mq

|N−〉= |N+,π〉Negative-parity partner 
state of the nucleon



An EFT for QCD
At low energies, quarks and gluons are not directly 

observed

Explicit quark/gluon degrees of freedom frozen into 
effective fields — hadrons

Weinberg: An effective Lagrangian, containing these effective fields, 
describes all the physics of the underlying field theory, provided all 

terms consistent with underlying symmetries are included.

Since near the chiral limit the pion is vanishingly light then 
the pion is the only relevant dynamical degree of freedom

At low-energies, QCD Lagrangian can be substituted for an 
effective Lagrangian of pions, constructed to be consistent 

with QCD



An EFT for QCD... 2

• A power-counting scheme in effective field 
theory (EFT) allows a systematic expansion in 
the small energy scales of the system

ε∼ p2

Λ2χ
∼ m2π
Λ2χ

Λχ scale of chiral symmetry breaking ∼ 1GeV

Expansion in strong coupling replaced by perturbative 
energy expansion

with a set of low-energy constants to be determined 
empirically



The nucleon in chiral EFT

• Leading-order nucleon Lagrangian Ψ=
(
p
n

)
LNπ = Ψ̄

{
∂/− (M0+ c2m2π)−

gA
2 fπ

γµγ5!τ(∂µ!π)
}
Ψ

m2π ∝ mq

Nucleon mass: O(p0) : M0

O(p2) : M0+ c2m2π

chiral limit value

π

N
What about quantum 

fluctuations?



Chiral correction

π

N

m2π ∝ mq
O(p2) : M0+ c2m2π

O(p3) :
∼ gA

fπ
Nucleon axial charge

Pion decay constant

Quantum fluctuation, integrate over 
all intermediate pion energies

Do some spin algegra, isospin sum, heavy-nucleon limit, 
and temporal and angular integration:

=− 3g2A
16π2 f 2π

∫ ∞

0
dk k4

k2+m2π



=
∫
dk

(
k2−m2π

)
+

∫
dk m4π
k2+m2π

Poor-man renormalisation
O(p2) : M0+ c2m2π

=− 3g2A
16π2 f 2π

∫ ∞

0
dk k4

k2+m2π
cubic divergence!∫ ∞

0
dk k4

k2+m2π
=

∫ ∞

0
dk k

4−m4π+m4π
k2+m2π

π
2m

3
π

=

MN =M0+ c2m2π−
3g2A
16π2 f 2π

[∫
dkk2+m2π

∫
dk+

π
2m

3
π

]
−



Renormalised expansion

Mren
0 =M0− 3g2A

16π2 f 2π

∫
dkk2

cren2 = c2+
3g2A
16π2 f 2π

∫
dk

MN =Mren
0 + cren2 m2π−

3g2A
32π f 2π

m3π

Nonanalytic term: model-independent

Absorb infinities into 
redefinition of expansion 

constants

MN =M0+ c2m2π−
3g2A
16π2 f 2π

[∫
dkk2+m2π

∫
dk+

π
2m

3
π

]
−



Recap
• Electromagnetic form factors encode the 

charge and current distributions in the 
nucleon

• Chiral symmetry can provide nontrivial 
constraints on the low-energy structure of the 
nucleon

• Important to incorporate these features in 
building a picture of the nucleon



Tomorrow

• Getting on to parity violation

• The weak interaction and nucleon structure

• Describing the strange-quark content of the 
nucleon


